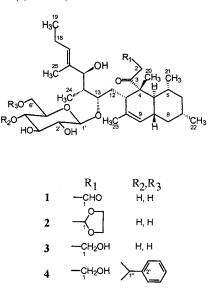
BIOSYNTHESIS OF ALDECALMYCIN

Sir:

A new antibiotic, aldecalmycin (1) was found in the culture broth of *Streptomyces* sp. MJ147-72F6. The antibiotic is active against methicillin-resistant *Staphylococcus aureus* (MRSA)¹⁾. The ¹H and ¹³C NMR spectra of 1 were complicated due to a presence of β -ketoaldehyde moiety. Therefore, the structure of 1 was established by various NMR experiments of some aldehyde-masked derivatives as shown in Fig. 1²⁾. The stereochemistry of 1 was determined by X-ray crystallographic study of the 4',6'-O-benzylidenedihydroaldecalmycin³⁾. As a series of studies in aldecalmycin, we now describe the biosynthesis of the antibiotic by the feeding experiments using ¹³C-labeled compounds.

A slant culture of the strain MJ147-72F6 was inoculated into 500-ml Erlenmeyer flask containing 110 ml of seed medium consisting of galactose 2.0%, dextrin 2.0%, Bacto-soytone (Difco) 1.0%, corn steep liquor (Iwaki) 0.5%, (NH₄)₂SO₄ 0.2%, CaCO₃ 0.2% and a drop of silicone (Shin-etsu Chemical Industry) (pH 7.4 before sterilization) and cultured at 27°C for 3 days on a rotary shaker (180 rpm). Two ml of the seed culture was transferred into five 500-ml Erlenmeyer flasks containing 110 ml of production medium composed of yeast extract 0.5%, glucose 1.0%, potato starch 2.0%, Casamino acids (Difco) 0.5% and CaCO₃ 0.4% (pH was not adjusted).

At 24 hours after inoculation, ¹³C-labeled compound (30 mg per flask) was added. Another same amount of ¹³C-labeled compound was added at 36 hours after inoculation and then the culture was incubated for further 12 hours. In case of $[1-^{13}C]D$ glucose, the amount was 25 mg per flask. The feeding intervals were referred to the production of aldecalmycin¹). The sodium $[1-^{13}C]$ acetate (99% atom % ¹³C), sodium $[2-^{13}C]$ acetate (99% atom % ¹³C), sodium $[1-^{13}C]$ propionate (99% atom % ¹³C), and $[1-^{13}C]D$ -glucose (99% atom % ¹³C) were obtained from Aldrich Chemical Co., U.S.A. as ¹³C-labeled compounds.


The culture broth was centrifuged and the supernatant was extracted with BuOAc at pH 3.0. The extract was washed with H_2O and was concentrated *in vacuo* to dryness. The residue was dissolved in MeOH and applied on Sephadex LH-20 column (160 ml). The column was eluted with MeOH and the active fractions against *Bacillus stear-othermophilus* were collected and dried under

reduced pressure. The crude powder was purified by CPC using the solvent system with $CHCl_3$ - MeOH - H_2O (5:6:4). Without further purifications, crude 1 (*ca.* 70% purity) was used for the next conversion.

The crude compound was dissolved in MeOH (1 ml) in the presence of acetic acid (8 μ l), to which was added sodium cyanoborohydride (8 mg) and the reaction mixture was stirred at a room temperature for 3 hours. The reaction mixture was concentrated under reduced pressure to dryness. The residue was dissolved in MeOH and applied on a Sephadex LH-20 column (160 ml). Elution with MeOH gave white amorphous powder of ¹³C-labeled dihydroaldecalmycin (3, 2.8~3.4 mg).

Enriched carbons of the ¹³C-labeled 3 obtained by the feeding experiments were measured by ¹³C NMR spectra. The enrichment ratios were calculated from the relative signal intensity of C-4' as 1.0 (Table 1). In case of [1-13C]acetate, C-1, C-8, C-11 were enriched. In case of [2-13C]acetate C-2, C-8a, C-12, all methyl carbons (C-19, C-20, C-21, C-22, C-23, C-24 and C-25) and their adjacent carbons (C-4, C-5, C-7, C-10, C-14, C-16 and C-18) were enriched. This result suggested that randomization had been occurred in the latter case. They might be considered as an indirect incorporation of the precursor through propionate. Incorporation experiment of [1-13C]propionate was carried out to make sure the consideration. The addition of [1-13C]propionate resulted in seven enriched

Fig. 1. Structures of aldecalmycin (1) and its derivatives (2, 3 and 4).

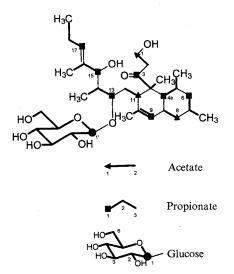

Position —	Enrichment ratio				
	$\delta_{\rm C}$ (ppm)	[1- ¹³ C]Acetate	[2-13C]Acetate	[1-13C]Propionate	[1- ¹³ C]Glucose
1	57.5	5.4*	1.5	0.8	1.1
2	43.8	0.7	7.1*	0.5	1.4
3	216.3	0.9	2.0	15.4*	0.6
4	52.6	0.9	5.6*	0.3	1.3
4a	46.3	1.3	2.7	24.4*	1.0
5	38.2	0.8	6.2*	0.3	1.3
6	47.8	1.5	3.4	29.6*	1.1
7	34.8	0.9	6.8*	0.4	1.4
8	43.9	4.3*	1.2	0.8	0.9
8a -	42.6	0.9	6.9*	0.3	1.4
9	124.3	1.1	2.1	21.7*	0.8
10	137.5	0.7	4.4*	0.2	1.2
11	45.5	4.6*	1.0	0.8	0.9
12	32.2	0.7	5.8*	0.4	1.1
13	76.7	1.4	2.7	29.5*	1.0
14	39.7	0.8	6.1*	0.3	1.4
15	80.4	1.5	3.3	21.4*	1.1
16	136.5	0.9	5.2*	0.3	1.2
17	131.2	1.2	2.7	20.2*	1.2
18	21.7	1.3	8.1*	0.5	1.5
19	14.3	1.5	5.5*	0.9	2.0
20	17.4	1.0	5.0*	1.0	1.2
21	23.8	0.7	3.6*	0.7	1.0
22	22.7	1.3	6.3*	1.3	1.4
23	22.8	1.4	6.3*	1.0	1.6
24	10.4	1.2	5.6*	0.8	1.4
25	10.4	1.2	5.4*	0.8	1.6
1′	100.5	0.8	1.0	0.7	2.2*
2'	75.4	1.0	1.2	0.7	0.8
3′	78.3	1.1	1.1	1.0	1.0
4′	72.0	1.0	1.0	1.0	1.0
5'	78.2	1.1	1.1	1.1	0.9
6′	63.2	0.8	0.9	0.8	1.0

 Table 1. Incorporation of isotopic precursors by ¹³C NMR experiments for 3.

Enrichment ratios were normalized to the signal intensity of C-4' as 1.0.

* Enrichment signal.

Fig. 2. Biosynthetic origin of carbon skeleton for 3.

carbons at C-3, C-4a, C-6, C-9, C-13, C-15 and C-17. From these results described above, the biosynthesis of the aglycon part was revealed. The sugar moiety of **3** was considered to be derived from D-glucose. To confirm this hypothesis, incorporation of $[1^{-13}C]D$ -glucose was performed and the enrichment carbon was measured by ¹³C NMR. The signal intensity of C-1' in the sugar moiety was enhanced at the relative value of 2.2 by $[1^{-13}C]D$ -glucose. The reason of low incorporation was supposed that the glucose was metabolized by the producing strain.

All of these results, aglycon of 3 was derived from decaketide intermediate which was condensed by three moles of acetate and seven moles of propionate, and sugar moiety of 3 was derived from one mole of D-glucose as summarized in Fig. 2.

> Ryuichi Sawa Yoshikazu Takahashi

Masa Hamada Tsutomu Sawa Hiroshi Naganawa Tomio Takeuchi

Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received June 30, 1994)

References

 SAWA, R.; Y. TAKAHASHI, S. ITOH, K. SHIMANAKA, N. KINOSHITA, Y. HOMMA, M. HAMADA, T. SAWA, H. NAGANAWA & T. TAKEUCHI: Aldecalmycin, a new antimicrobial antibiotic from *Streptomyces*. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties. J. Antibiotics 47: $1266 \sim 1272$, 1994

- SAWA, R.; Y. TAKAHASHI, T. SAWA, H. NAGANAWA & T. TAKEUCHI: Aldecalmycin, a new antimicrobial antibiotic from *Streptomyces*. II. Structure elucidation by NMR studies. J. Antibiotics 47: 1273~1279, 1994
- 3) SAWA, R.; Y. TAKAHASHI, H. NAKAMURA, K. T. NAKAMURA, H. NAGANAWA & T. TAKEUCHI: Aldecalmycin, a new antimicrobial antibiotic from *Streptomyces*. III. Determination of absolute configuration. J. Antibiotics 47: 1280~1283, 1994